Polynomial Hulls and an Optimization Problem
نویسنده
چکیده
We say that a subset of C n is hypoconvex if its complement is the union of complex hyperplanes. We say it is strictly hypoconvex if it is smoothly bounded hypoconvex and at every point of the boundary the real Hessian of its defining function is positive definite on the complex tangent space at that point. Let Bn be the open unit ball in C . Suppose K is a C compact manifold in ∂B1 × C , n > 1, diffeomorphic to ∂B1 × ∂Bn, each of whose fibers Kz over ∂B1 bounds a strictly hypoconvex connected open set. Let K̂ be the polynomial hull of K. Then we show that K̂ \ K is the union of graphs of analytic vector valued functions on B1. This result shows that an unnatural assumption regarding the deformability of K in an earlier version of this result is unnecessary. Next, we study an H optimization problem. If ρ is a C real-valued function on ∂B1 × C , we show that the infimum γρ = inff∈H∞(B1)n ‖ρ(z, f(z))‖∞ is attained by a unique bounded f provided that the set {(z, w) ∈ ∂B1 × C |ρ(z, w) ≤ γρ} has bounded connected strictly hypoconvex fibers over the circle. §
منابع مشابه
Some Results on Polynomial Numerical Hulls of Perturbed Matrices
In this paper, the behavior of the pseudopolynomial numerical hull of a square complex matrix with respect to structured perturbations and its radius is investigated.
متن کاملSome results on the polynomial numerical hulls of matrices
In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.
متن کاملGlobal optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...
متن کاملError bounds for monomial convexification in polynomial optimization
Convex hulls of monomials have been widely studied in the literature, and monomial convexifications are implemented in global optimization software for relaxing polynomials. However, there has been no study of the error in the global optimum from such approaches. We give bounds on the worst-case error for convexifying a monomial over subsets of [0, 1]. This implies additive error bounds for rel...
متن کاملA hybrid algorithm optimization approach for machine loading problem in flexible manufacturing system
The production planning problem of flexible manufacturing system (FMS) concerns with decisions that have to be made before an FMS begins to produce parts according to a given production plan during an upcoming planning horizon. The main aspect of production planning deals with machine loading problem in which selection of a subset of jobs to be manufactured and assignment of their operations to...
متن کامل